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Abstract

To date, genome-wide association studies (GWASs) have successfully identified thousands of associations between
genetic polymorphisms and human traits. However, the pathways between the associated genotype and
phenotype are often poorly understood. The transcriptome, proteome, and metabolome, the omics, are positioned
along the pathway and can provide useful information to translate from genotype to phenotype. This review shows
useful data resources for connecting each omics and describes how they are combined into a cohesive analysis.
Quantitative trait loci (QTL) are useful information for connecting the genome and other omics. QTL represent how
much genetic variants have effects on other omics and give us clues to how GWAS risk SNPs affect biological
mechanisms. Integration of each omics provides a robust analytical framework for estimating disease causality,
discovering drug targets, and identifying disease-associated tissues. Technological advances and the rise of
consortia and biobanks have facilitated the analyses of unprecedented data, improving both the quality and
quantity of research. Proficient management of these valuable datasets allows discovering novel insights into the
genetic background and etiology of complex human diseases and contributing to personalized medicine.

Background
Genome-wide association studies (GWASs) are study
designs for evaluating associations between genetic vari-
ants and phenotypic traits across the genomes, revealing
the genetic impacts on a variety of phenotypes since its
first success in 2002 [1–3]. In recent years, the rise of
international consortia and biobanks has enabled
GWAS’s application on a scale of more than 1 million
samples, which can identify a large number of genetic
risk variants. However, little is known about how GWAS
results should be translated into disease etiology and
novel drug discovery. To correctly interpret GWAS re-
sults, it is useful to utilize additional information, such
as transcriptome, proteome, and metabolome, which are
the components of the central dogma (Fig. 1a). Assess-
ment of the translation from genotype to phenotype, in-
cluding the role of omics, will enable us to understand

how genetic diversity impacts our health (trans-layer
omics analysis).
Ideally, researchers prefer to use identical samples with

data across each omics. However, few datasets contain
all the omics data in individuals. While it would be ideal
for defining a new sample and collecting all of the omics,
genetic and phenotypic data, that undertaking has enor-
mous cost and time required. While individual raw data
is often restricted in its use due to ethical issues, de-
identified or anonymized analysis results are available in
many biological databases. We can perform comprehen-
sive analyses for various phenotypes by integrating the
accumulated data with our own data. In particular, the
quantitative trait loci (QTL), or loci associated with a
variation of a quantitative trait (Fig. 1b), play an essential
role in trans-layer omics analysis.
This review introduces several useful resources that

can be applied to trans-layer omics analysis and de-
scribes how the data can be utilized, mainly focusing on
QTL.
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Transcriptome
More than 90% of the risk variants identified by GWASs
have been found in non-coding regions [4, 5], and as a re-
sult, rarely alter the amino acid sequence. Several studies
have reported that many GWAS risk variants in the non-
coding region are enriched in regulatory regions involved
in gene transcription, including enhancers and promoters
[6, 7]. These findings motivated the investigation of gen-
etic variants, called expression quantitative trait loci
(eQTL), that affect gene expression levels. Researchers

have identified numerous eQTL, some of which are avail-
able in several curated databases (Table 1). The effects of
eQTL are tissue- and cell-specific [8, 18], and it is import-
ant to use eQTL data derived from the appropriate tissues
and cells in relation to the target phenotype.
The Genotype-Tissue Expression (GTEx) Project has

built a large-scale database of organ-specific eQTL data.
The latest GTEx database is version 8, deployed in 2020,
which includes curated data on as many as 15,201 RNA
sequencing samples from 49 tissues of 838 donors [9].

Fig. 1 Overview of trans-omics layer analysis. a Omics data constituting each layer of the central dogma and analysis methods that combine
them. GWASs show associations between genotype and phenotype. Quantitative trait loci (QTL), which reflect how much genetic variants affect
data in other layers, can link genome to other omics. Epigenetic data provide functional genomic annotations based on various experiments.
These data connecting each layer are described in red squares and analysis methods that integrate them are shown in bold. GWAS: genome-
wide association study, TWAS: transcriptome-wide association study, eQTL: metabolite QTL, sQTL: splicing QTL, pQTL: protein QTL, mQTL:
metabolite QTL, meQTL: methylation QTL, LDSC regression: Linkage disequilibrium score regression. b An example of QTL. The continuous
quantitative traits, such as gene expression level and protein amount, are plotted for each genotype

Table 1 Useful resources and databases related to QTL

Name Data Description URL Reference

GTEx eQTL, sQTL The project examining 15,201 RNA-sequencing samples from
49 tissues and whole-genome sequencing of 838 donors.

https://gtexportal.org/home/ [8, 9]

DICE eQTL The resource of eQTL considering all human immune cell
types.

https://dice-database.org/ [10]

Immugen eQTL The resource of eQTL neutrophils and splenic CD4+ T cells
across a panel of 40 mouse inbred strains.

http://www.immgen.org/ [11]

eQTLgen eQTL The consortium which incorporates 37 eQTL datasets for the
blood from 31,684 individuals.

https://www.eqtlgen.org/ [12]

PsychENCODE eQTL The consortium which generates a comprehensive online
resource for the adult brain across 1866 individuals.

http://resource.psychencode.org/ [13]

eQTL
Catalogue

eQTL The database which contains quality controlled, uniformly
re-computed QTLs from 19 eQTL publications.

https://www.ebi.ac.uk/eqtl/ [14]

SomaLogic
serum pQTL

pQTL The serum pQTL summary statistics form 3301 European
healthy samples (INTERVAL study).

http://www.phpc.cam.ac.uk/ceu/
proteins/

[15]

mQTLdb metylation
QTL

The methylation QTL summary statistics of 1000 mother-child
pairs at serial time points across the life-course (ARIES).

http://www.mqtldb.org/ [16]

QTLbase Various
QTLs

The database compiling genome-wide QTL summary statistics
for human molecular traits across > 70 tissue/cell types.

http://mulinlab.org/qtlbase [17]

Shirai and Okada Inflammation and Regeneration            (2021) 41:6 Page 2 of 7

https://gtexportal.org/home/
https://dice-database.org/
http://www.immgen.org/
https://www.eqtlgen.org/
http://resource.psychencode.org/
https://www.ebi.ac.uk/eqtl/
http://www.phpc.cam.ac.uk/ceu/proteins/
http://www.phpc.cam.ac.uk/ceu/proteins/
http://www.mqtldb.org/
http://mulinlab.org/qtlbase


In addition to eQTL information, the GTEx also con-
tains genetic variants, splicing quantitative trait loci
(sQTL), affecting gene splicing. The sQTL data allow us
to develop hypotheses about genetic polymorphisms in
splicing, leading to diversity in the RNA transcribed
from a single gene.
Several eQTL analyses for individual blood cell types

have been successfully performed due to easy access to
the sample and the cell diversity [10, 19–21]. In these
studies, cell types were clustered by sorting in the la-
boratory or estimation in silico.
The DICE (database of immune cell expression, ex-

pression quantitative trait loci (eQTL) and epigenomics)
project was established to define the transcriptional and
epigenomic landscape of many human immune cell
types in relation to genetic variation [10]. As the first re-
port from this project, Schmiedel et al. performed the
eQTL analysis for 13 primary immune cell types (three
innate immune cell types, four naive adaptive immune
cell types, and six CD4+ T memory cell types) and two
activated cell types isolated from 106 leukapheresis sam-
ples provided by 91 healthy subjects in the San Diego
area. They identified a total of 12,254 genes with cis-
eQTL and a large fraction (41%) of these genes showed
a strong cis-association with genotype only in a single
cell type. Furthermore, they confirmed several cases in
which the cell types with eQTL corresponding to GWAS
risk SNPs related to the well-known pathogenesis.
As for the eQTL analysis of non-Europeans, Ishigaki

et al. conducted the eQTL analysis on five immune cell
types (CD4+ T cells, CD8+ T cells, B cells, natural killer
cells, and monocytes) and unfractionated peripheral
blood from 105 healthy Japanese volunteers [21]. In this
study, gene expression levels were predicted from indi-
vidual genotype data based on the developed eQTL data-
set and public epigenetic data. Subsequently, the
association analysis between the estimated gene expres-
sion levels and 15 diseases state was performed. Finally,
the cell-specific pathway activity was predicted by inte-
grating the direction of eQTL effects. This framework
applied to rheumatoid arthritis (RA) revealed that activa-
tion of the TNF pathway in CD4+ T cells plays a vital
role in RA etiology.
Association analyses for genome-wide gene expression,

as was done in this study, are called transcriptome-wide
association studies (TWASs). TWASs use penalized re-
gression techniques, such as LASSO, Ridge, or Elastic
net, which incorporate eQTL reference data as training
data and evaluate associations between predicted gene
expression levels and a target trait. TWAS can also be
performed with only GWAS summary statistics and ex-
ternal eQTL reference data [22, 23]. However, we should
carefully interpret TWAS results because non-causal
genes co-regulated with causal genes are likely

significant, resulting in TWAS results’ bias. Fine-
mapping of causal gene sets deals with this problem by
incorporating linkage disequilibrium data and provides
less unbiased results [24, 25].
Most transcriptome studies focus on coding genes be-

cause many non-coding genes have unknown functions,
and the analysis results can be challenging to interpret.
Sakaue et al. developed a method for estimating GWAS-
target miRNAs and GWAS-related tissues by integrating
GWAS summary statistics and miRNA expression data
[26]. Analyses incorporating the transcriptome are ex-
pected to continue developing with increasing resources
and maturating analytic techniques for non-coding gene
data.

Single-cell analysis
Single-cell RNA sequencing makes it possible to evaluate
gene expression at an unprecedentedly fine resolution in
individual cell types and identify rare populations with-
out assumptions. The previous classification of cells by
surface markers could only identify existing cell types
and had difficulty identifying heterogeneity in captured
cell types [27]. Single-cell RNA sequencing is currently
evolving with respect to technology and sample size.
Monique et al. conducted eQTL analysis using single-
cell RNA sequencing to identify eQTL for rare popula-
tions and reported variants that alter gene co-expression
[28]. The eQTL analysis for single-cell RNA sequencing
can analyze individual cell types and freely definable
clusters such as cell lineages, providing a more flexible
analysis framework. More and more cell-type-specific
and cell-cluster-specific eQTL will be identified in the
near future [29].
In general, eQTL analyses that handle RNA data have

a limit in that they capture a snapshot at a single point
in time, not reflective of transcriptome fluctuations.
Therefore, many eQTL are conditional, and some can
only be identified through cell activation or cell differen-
tiation [30, 31]. Davenport et al. focused on transcrip-
tome changes associated with drug administration [32].
They reported how much the eQTL were impacted by
IL6 antibody treatment in SLE patients, resulting in ex-
pression changes. This study showed that the eQTL ana-
lysis using RNA-seq data at multiple times (at 0, 12, and
24 weeks of anti-IL6 drug administration) increased the
number of identifiable eQTL compared to the analysis
from one point in time. This study revealed that several
eQTL effects were enhanced at a high total IFN level or
by IL6 antibody administration, and each of the eQTL
was enriched in ISRE motif and IRF4 motif. These find-
ings suggested that these transcription factors (TFs)
binding motifs may be key regulatory mediators of envir-
onmental stimuli and potential therapeutic targets [33].
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Mass cytometry is another single-cell modality and
provides different cell-type-specific profiles. Mass cy-
tometry measures a limited number (~ 40) of pre-
selected markers, but these markers are supported by
decades of experimental evidence that they are useful for
defining cellular heterogeneity [34]. Zhang et al. defined
stromal and immune cell populations overabundant in
RA joint synovial tissues by integrating single-cell RNA
sequencing and mass cytometry data [35]. They found
that several specific immune cells, categorized by genetic
and proteomic profiles (e.g., THY1+HLA-DRAhi sublin-
ing fibroblasts), were increased in RA synovium. This
study showed that the integration of multiple experi-
mental modalities helps us select trait-specific cells by
increasing the individual cells’ information. QTL ana-
lyses of these cells central to the etiology should provide
more evident and profound insights into genetic impacts
on various diseases.

Proteome
The proteome comprises the entire protein complement
produced in an organism or system. Sun et al. investi-
gated the associations between genetic variants and 2994
proteins in 3301 Europeans [15]. They identified 1927
genetic loci, which altered the plasma protein amount
between 1478 proteins and 764 genomic regions, known
as protein quantitative trait loci (pQTL). Of note, only
10–20% of the previously reported cis eQTL were cis
pQTL, while cis pQTL were significantly enriched in
eQTL for the corresponding gene. Comparison between
eQTL and pQTL studies may be influenced by differ-
ences in sample size, tissues, and technology platforms
used in each analysis. Nonetheless, this study suggested
that genetic effects on plasma protein abundance are
often, but not exclusively, driven by regulation of
mRNA.
Plasma proteins play essential roles through biological

processes and represent a significant resource for drug
targets [36]. Mendelian randomization (MR) is a useful
method for exploring diseases-causing proteins, which
can be therapeutic targets. Instead of allocating interven-
tions or non-intervention as in randomized controlled
trials (RCT), MR allocates subjects according to risk var-
iants of the causative traits [37]. MR is an attractive
method for conducting RCT-like research despite being
feasible with existing data. MR studies can be performed
if the two traits are in different cohorts. Thus, the ana-
lysis platform with access to various GWAS results has
been currently established [38]. Zheng et al. conducted a
large-scale MR analysis of 1002 proteins on 225 traits
with five extensive pQTL datasets [39]. They found 111
causal relationships between 65 proteins and 52 disease-
related phenotypes. When these relationships were quer-
ied against a curated drug database, previously defined

associations between approved drugs and their target
proteins were more likely to be identified. This finding
supported MR as a useful tool to search for drug targets.

Metabolome
The metabolome consists of small molecules that are in-
termediates or products of metabolism, ranging from
peptides and lipids to drugs and pollutants. Several stud-
ies that tested the associations between genetic variants
and serum metabolites have reported hundreds of loci
changing serum metabolite amount, or metabolite quan-
titative trait loci (mQTL), which were often mapped to
genes encoding for enzymes or transporters [40–42].
The kidneys play an important role in the regulation of
blood metabolite by controlling the amount of urinary
metabolites [43]. As a result of excretion, urinary metab-
olites are more diverse than serum metabolites. There-
fore, they can reflect individual differences that cannot
be captured in blood metabolites. This fact inspired the
investigation of associations between urinary metabolites
and genetic variants [44, 45]. Schlosser et al. performed
the GWAS for the urinary concentrations of 1172 me-
tabolites among 1627 patients with reduced kidney func-
tion [44]. They identified 240 urine metabolite-mQTL
associations and found that the loci included 90 unique
genes. These genes’ expressions were seen in organs in-
volved in the absorption and metabolism, such as the
kidney, liver, and small intestine.
Furthermore, they used the colocalization method to

confirm whether a GWAS risk variant was also respon-
sible for mQTL signals in the locus. GWAS and QTL
signals can overlap for three reasons: two independent
causal variants in linkage disequilibrium (linkage), a sin-
gle causal variant affecting the GWAS trait via gene ex-
pression modulation (causality), or a single causal
variant affecting both traits independently (pleiotropy)
[46]. Colocalization helps us distinguish causality and
pleiotropy from linkage, which is essential for identifying
targets that drive GWAS risk loci.

Epigenome
The epigenome describes a biological phenomenon
where chemical compounds can modify or mark the
genome to affect gene expressions. DNA methylation at
CpG dinucleotides plays an important role in gene regu-
lation by altering DNA affinity with TF or chromatin-
binding proteins. DNA methylation can occur for vari-
ous reasons: normal development such as genomic im-
printing, aging, environmental factors, or genetic factors.
In these, genetic factors can be inherited and diversify
the innate methylation status among individuals. Gaunt
et al. evaluated the genetic influences on DNA methyla-
tion, or methylation quantitative trait loci (meQTL), in
the human blood at five different life stages: children at
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birth, childhood, adolescence, and their mothers during
pregnancy and at middle age [16]. They identified 30,000
significant associations at each time point and re-
vealed that the genetic heritability was highly stable
at about 20% throughout the life stages. They also
showed that meQTL likely overlapped with eQTL, as
reported in GTEx, and enriched in GWAS risk loci
for complex diseases, such as Alzheimer’s disease and
schizophrenia. Because DNA methylation is generally
involved in gene regulation, genetic variants that
affect methylation status can also affect gene expres-
sion levels. Their result supported that some GWAS
risk variants may impact our health by altering gene
expression via methylation.
While QTL are beneficial information in evaluating

the effects of GWAS risk SNPs, most QTL analyses do
not cover all tissues and probably have insufficient
power in some tissues due to a lack of adequate sample
size. It is useful to consider what functional annotations
target variants are located in (Table 2). ENCODE [47],
ROADMAP Epigenomics [49], and BLUEPRINT [50]
have accumulated considerable resources, mapping regu-
latory annotations in the genome by profiling chromatin
functions, including DNase hypersensitivity sites, several
types of histone markers, and the binding sites of
chromatin-related proteins in many cells and tissues.
ENCODE, which aims to catalog all functional elements
of humans and mice, was updated in 2020 by expanding
the target cell types and tissues and adding new annota-
tions, including RNA-binding protein regions and chro-
matin loops [48]. ENCODE, version 3, integrates a vast
amount of accumulated data into novel annotations for
926,535 candidate cis-regulatory elements (cCRE),

covering 7.9% of the human genome and 339,815 cCRE
covering 3.4% of the mouse genome. The registered data
accumulated in several large consortia including EN-
CODE is tremendous; a tool for efficiently searching
them has also been released [52].
The FANTOM Consortium has used a unique tech-

nique called cap analysis of gene expression (CAGE) to
identify promoters and enhancers across hundreds of
cells and tissues [53]. Hirabayashi et al. developed NET-
CAGE (native elongating transcript), which enables the
detection of TSSs of nascent RNAs and quantifies true
transcriptional activities of promoters and enhancers at
high nucleotide resolution in diverse cell types as well as
frozen cells and tissues [57].
Linkage disequilibrium score regression (LDSC regres-

sion) is an effective tool for combining GWAS summary
statistics with these genome annotations. In the poly-
genic traits, the χ2 association statistic for a given SNP
in GWASs includes the effects of all SNPs tagged by this
SNP [58]. The LD score is calculated by the sum of the
linkage disequilibrium r2 measures of the target variant
and the surrounding variants (e.g., variants in a window
size of 1 cM around the target variant). The regression
of the χ2 statistics by the LD score in a genome-wide
manner provides an estimate of heritability. The modi-
fied form, or stratified LDSC regression, partitions SNP
heritability by functional genomic annotations and tests
whether the GWAS statistics is enriched in the annota-
tions [59]. For stratified LDSC regression, the authors
have developed 10 cell-group-specific annotations and
220 cell-type-specific annotations for histone modifica-
tions (H3K4me1, H3K4me3, H3K9ac, and H3K27ac)
created from ROADMAP Epigenomics data. These

Table 2 Useful resources and tools related to epigenetic data

Name Description URL References

ENCODE The project which aims to catalog all functional elements
genome of humans and mice by various assays.

https://www.encodeproject.org/ [47, 48]

Roadmap
Epigenomics

The project which aims to produce a public resource of
human epigenomic data.

http://www.roadmapepigenomics.org/ [49]

BLUEPRINT The European project which aims to generate epigenomic
maps of blood cells.

https://www.blueprint-epigenome.eu [50]

DEEP The German projects which aim to map and functionally
interpret reference epigenomes in normal and diseased states.

http://www.deutsches-epigenom-programm.de [51]

DeepBlue The data server which provides epigenetic data collection
including data from the above four projects.

https://deepblue.mpi-inf.mpg.de [52]

FANTOM The consortium to assign functional annotations to the
full-length cDNAs collected during the Mouse Encyclopedia
Project at RIKEN.

https://fantom.gsc.riken.jp/ [53]

CHIP-ATLAS The database for visualizing and making use of public
ChIP-seq data submitted to the SRA (Sequence Read Archives).

https://chip-atlas.org/ [54]

HaploReg The tool to annotate haplotype blocks containing target
genetic variants with epigenetic data.

https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php

[55]

RegulomeDB The tool to annotate genome regions with epigenetic and
eQTL data and classify them by function.

https://regulomedb.org/regulome-search/ [56]
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annotation sets are useful to implement GWAS enrich-
ment analyses in various tissues [60].
Ishigaki et al. estimated TF enrichment in various dis-

eases using the annotation of TF binding sites defined
by 2868 publicly available chromatin immunoprecipita-
tion sequencing datasets for 410 unique TFs [61]. They
identified 378 significant enrichments across nine dis-
eases (e.g., NF-κB for immune-related diseases) and re-
vealed that TF clusters characterized based on LD score
included TF components which showed similar disease
enrichment. LDSC regression provides a flexible frame-
work because it can integrate GWAS summary statistics
and customized genome annotations. In the future, func-
tional annotations will continue their significant growth
and will be available for genome annotation projects. En-
richment analyses combining these valuable annotations
and GWAS data should contribute to the elucidation of
complex human traits.

Conclusions
The available omics data has improved in both quantity
and quality. State-of-the-art technology, such as whole-
genome sequencing, long lead sequencing, mass cytome-
try, and single-cell RNA sequencing, should illuminate
currently unreachable areas. Furthermore, trans-layer
omics analysis empowers the information from the indi-
vidual omics. If the relationship between the genome
and each omics is revealed, various living organisms’
phenomena could be predicted from genome data. The
tools introduced in this review are not limited to one
type of omics pair but can be applied to various omics
data combinations (e.g., colocalization between GWAS
and sQTL). The trans-layer omics analyses using these
sophisticated methods and a vast amount of data provide
novel insights into the genetic background, etiology of
complex diseases, and drug discovery, which should con-
tribute to the implementation of personalized medicine.
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